Licentiate Seminar:

Physics of Two-Dimensional Vortex Glass Models

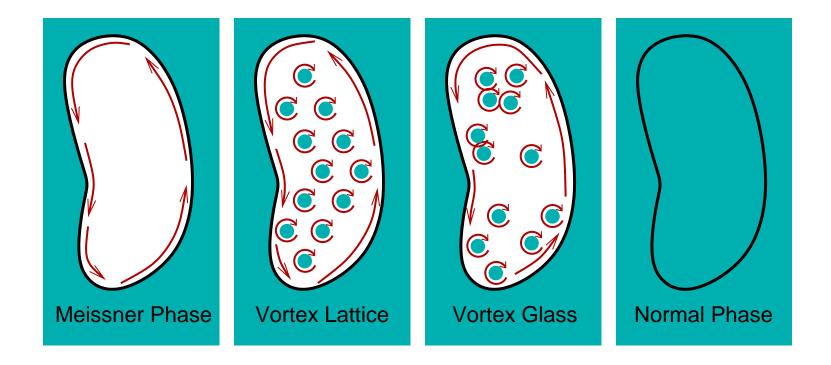
Petter Holme

Department of Theoretical Physics, Umeå University, Sweden

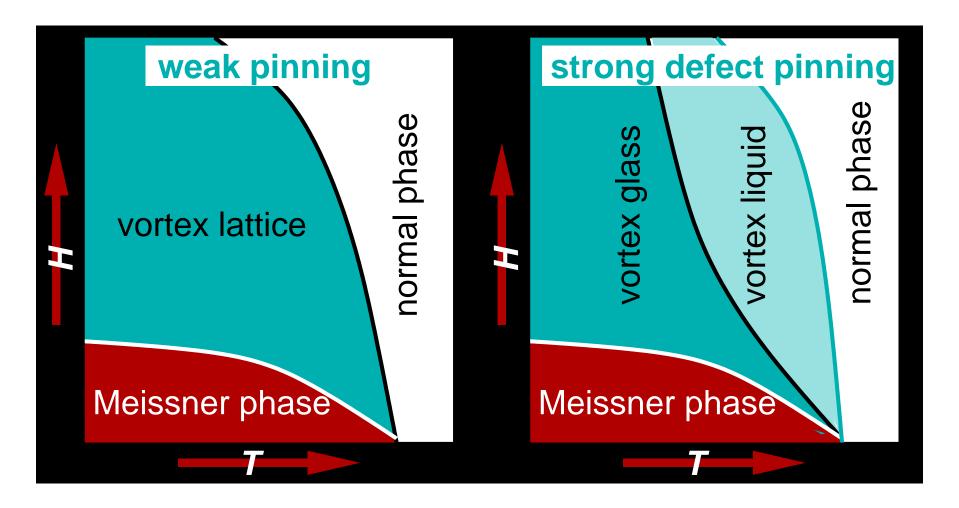
November 6, 2001

Papers:

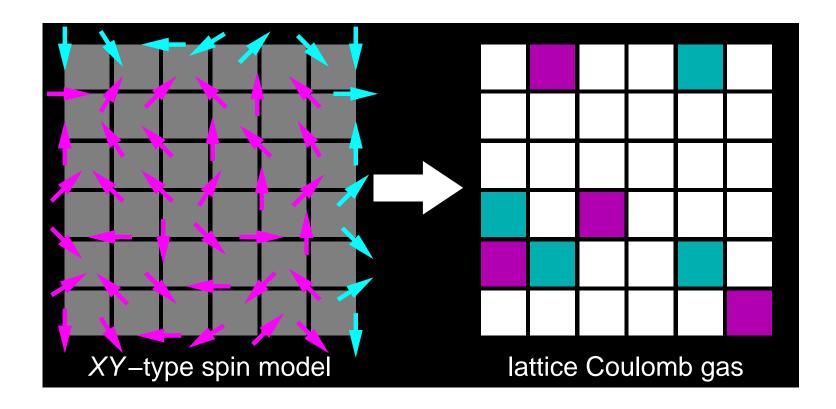
- [1.] Petter Holme and Peter Olsson, A Zero-Temperature Study of Vortex Mobility in Two-Dimensional Vortex Glass Models.
- [2.] Petter Holme, Beom Jun Kim, and Petter Minnhagen, *Phase Transitions in the Two-Dimensional Random Gauge XY Model*.



- ◆ *Meissner Phase* Magnetic field expelled from the interior by supercurrents close to the surface. Type I and Type II
- Vortex lattice Magnetic field penetrates the sample in a regular lattice of vortex-lines.
 Type II
- \diamond *Vortex glass* Magnetic field penetrates the sample in an irregularly distributed vortex-lines. (High- T_c) Type II
- ◆ *Normal phase* No supercurrents. Type I and Type II

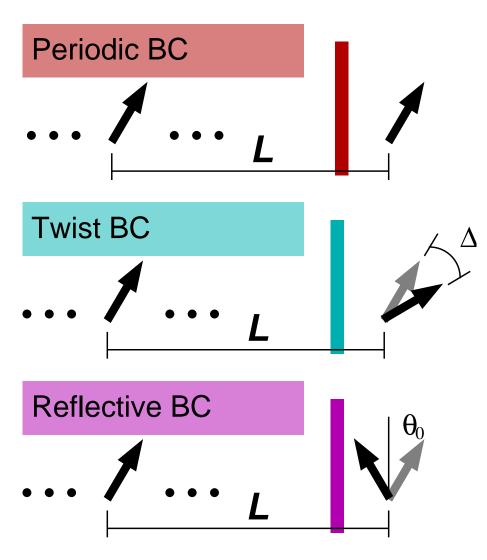


COMPUTATIONAL MODELS: SPIN & COULOMB GAS PICTURES



- ◆ In XY type spin models there are two types of excitations: *spin waves* and *vortices*.
- ◆ Since vortices are considered the more important, spin waves are sometimes removed and the model reduced to a *lattice Coulomb gas*.
- ◆ For Zero-*T* methods I will mostly use the CG picture, for Finite-*T* methods the spin picture.

COMPUTATIONAL MODELS: BOUNDARY CONDITIONS



- ◆ *Periodic BC:* Every point is interior. Standard for studying bulk properties of a material.
- ♦ Provided the BC converge to PBC as $L \rightarrow \infty$ it can be modified to study symmetries of the system . . .
- Twist BC: For detecting superconductivity (through the helicity modulus Υ).
- ◆ *Reflective BC:* For detecting chiral order.

COMPUTATIONAL MODELS: DEFINITIONS

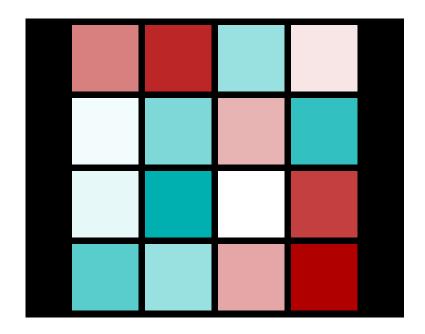
$$\mathcal{H} = -\sum_{(ij)_{nn}} \cos\left(\theta_i - \theta_j - A_{ij} - \frac{\mathbf{r}_{ij}}{L} \cdot \Delta\right)$$

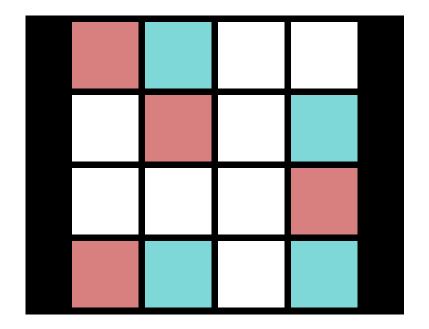
Random Gauge XY Model

 $A_{ij} \in [-r\pi, r\pi)$, $0 \le r \le 1$. Standard XY gauge glass corresponds to r = 1.

XY Spin Glass Model

 $A_{ij} \in \{0, \pi\}$, $A_{ij} = \pi$ with probability s, $0 \le s \le 1$. Standard XY spin glass corresponds to s = 1/2.





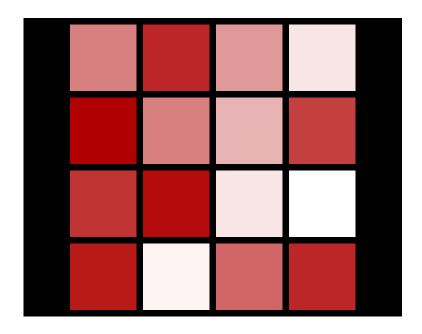
Random Pinning Model

$$\mathcal{H} = -\frac{1}{2} \sum_{\mathbf{r} \neq \mathbf{r}'} (q_{\mathbf{r}} - f) G(\mathbf{r} - \mathbf{r}') (q_{\mathbf{r}'} - f) - \sum_{\mathbf{r}} v_{\mathbf{r}} q_{\mathbf{r}}^{2}.$$

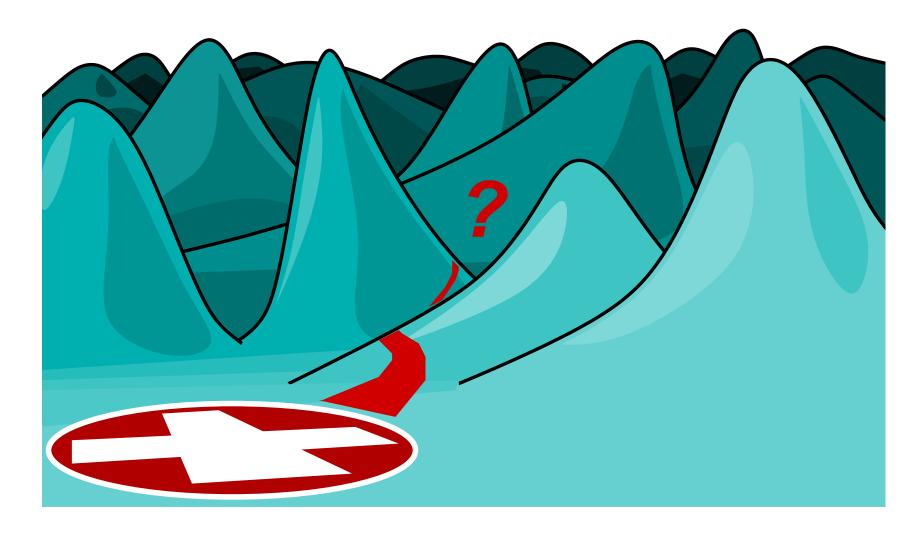
 $v_{\mathbf{r}} \in [-\pi, \pi)$ is a random variable. The vorticity $q_{\mathbf{r}}$ is restricted to $\{-1, 0, 1\}$.

 $G(\mathbf{r})$ is the lattice Green's function:

$$G(\mathbf{r}) = \left(\frac{2\pi}{L}\right)^2 \sum_{k \neq 0} \frac{1 - \exp(i\mathbf{k} \cdot \mathbf{r})}{4 - 2\cos k_x - 2\cos k_y}$$

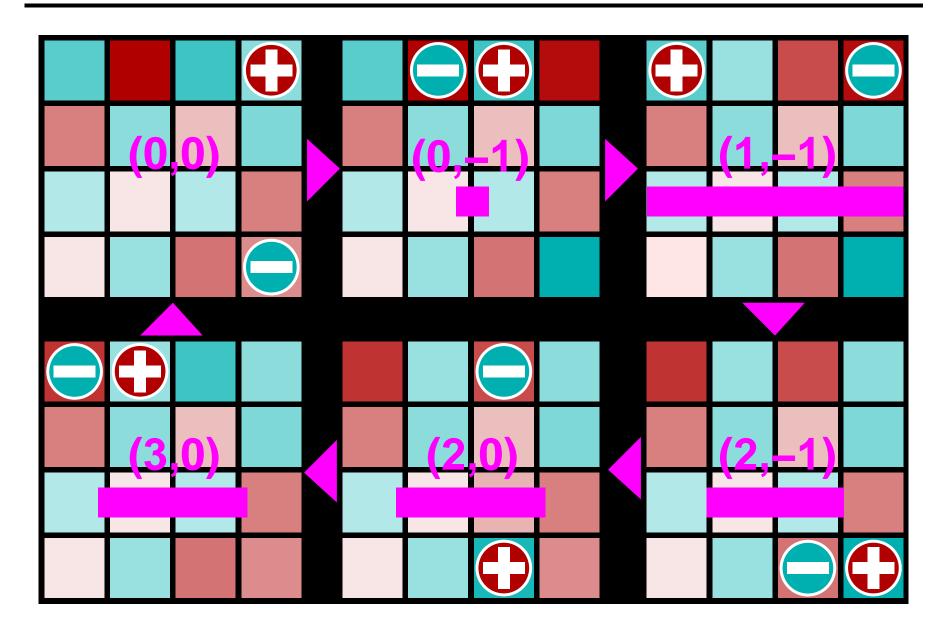


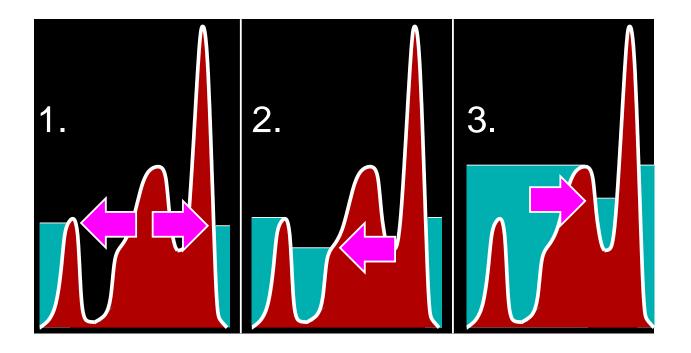
ZERO T:IS VORTICITY TRANSPORT POSSIBLE?



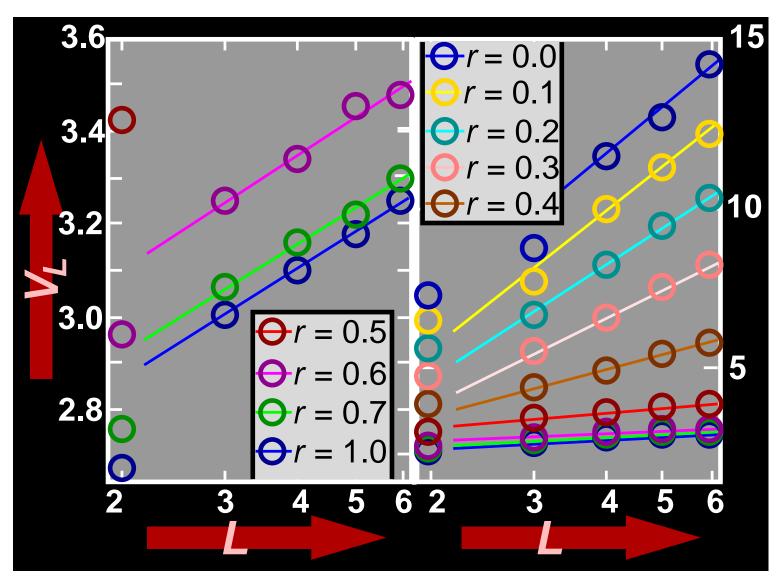
Mobile vortices ⇒ no superconductivity. Are the barriers for vortex motion infinite?

ZERO T: THE BARRIER AGAINST VORTEX DISSIPATION

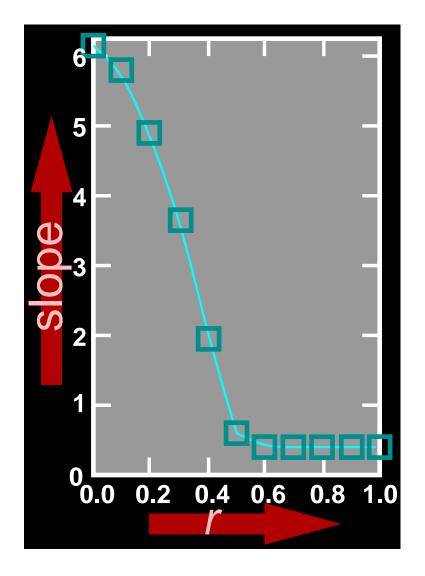


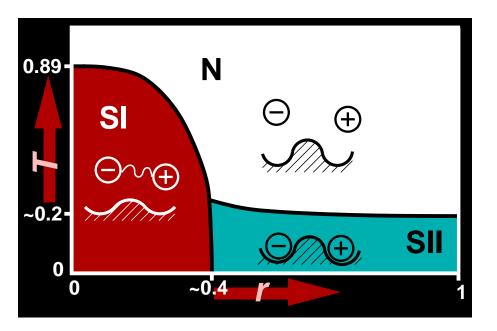


- Generate $4L^2$ configurations by applying the $4L^2$ possible dipole excitations to the current configuration.
- ◆ Calculate the energy of each such configuration and put them in list together with their polarization relative to the ground state.
- ◆ Take the lowest energy configuration from the list to be the new current configuration.
- If this configuration has already been encountered, but with a different polarization such that $\Delta P = (\pm L, 0)$ we are done. Otherwise, go to the first step.



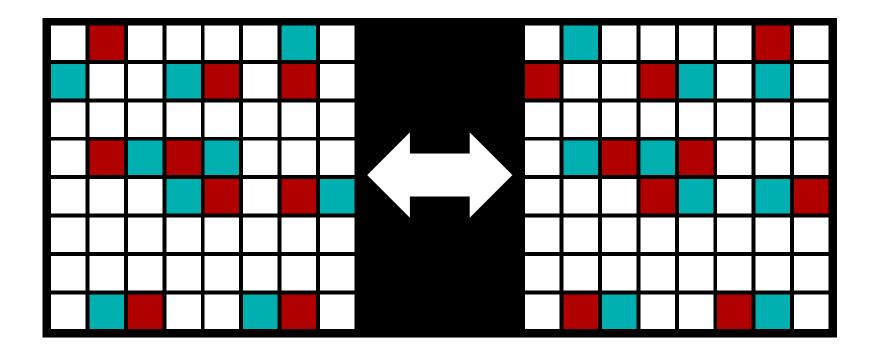
Random Gauge XY model



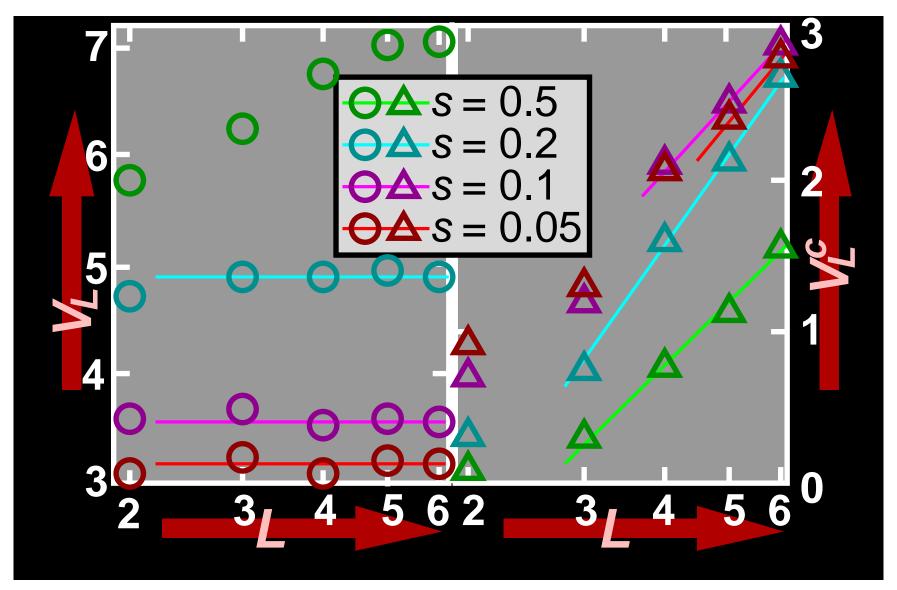


- The slope becomes r-independent for r > 0.4.
- A phase boundary has been found at $r \approx 0.4$ earlier.

ZERO T: THE BARRIER SUSTAINING CHIRAL ORDER

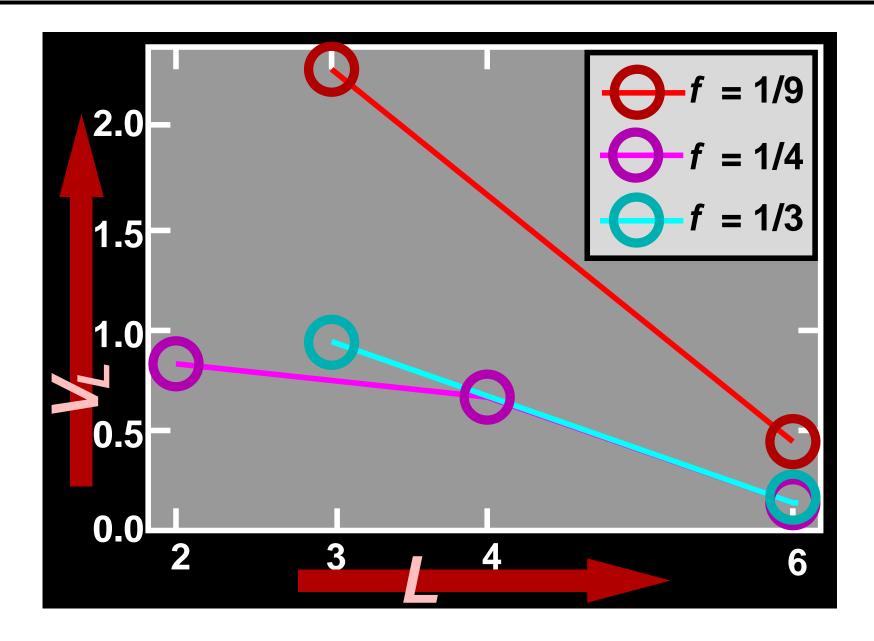


- Generate $4L^2$ configurations by applying the $4L^2$ possible dipole excitations to the current configuration.
- Calculate the energy of each such configuration and put them in list.
- ◆ Take the lowest energy configuration from the list to be the new current configuration.
- ◆ If this configuration chirally mirrored ground state we are done. Otherwise, go to the first step.



XY Spin Glass model

ZERO T: RESULTS FOR THE RANDOM PINNING MODEL



ZERO T: DOMAIN WALL ENERGY

Domain Wall Energy

$$\Delta E_{\rm dw} = \left[\left| \min_{\Delta=0} E - \min_{\Delta=\pi} E \right| \right]$$

where $[\cdot]$ marks disorder average.

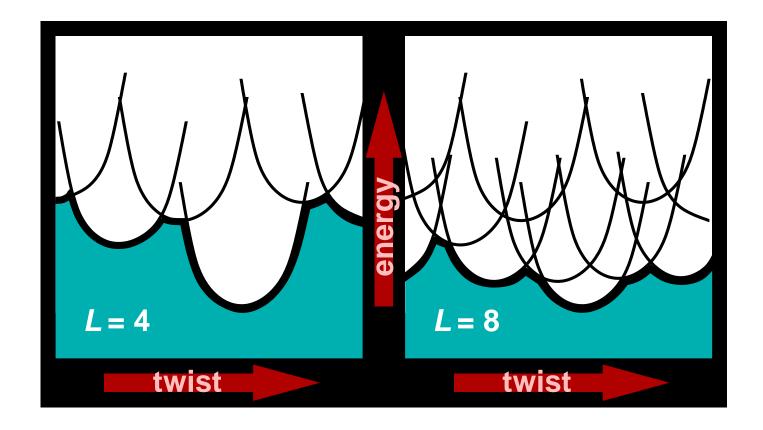
Best Twist Domain Wall Energy

$$\Delta E_{\mathrm{dw}}^{\mathrm{bt}} = \left[\min_{\Delta = \Delta_0 + \pi} E - \min_{\Delta = \Delta_0} E\right]$$

where Δ_0 gives the global twist space ground state.

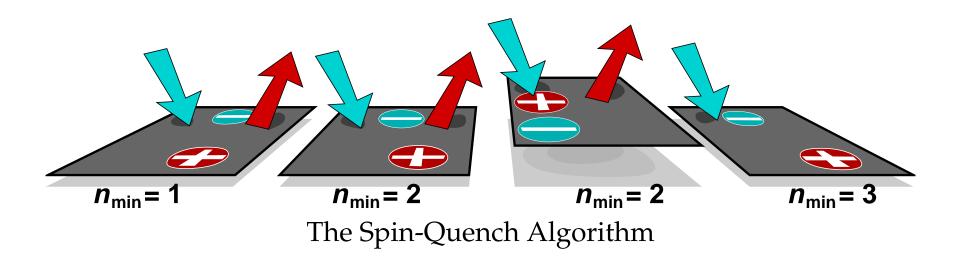
- Both $\Delta E_{\rm dw}$ and $\Delta E_{\rm dw}^{\rm bt}$ scales like L^{θ} , $\theta < 0$.
- ◆ This implies that—provided the system is ergodic—the energy vs twist landscape is flat, and vortices are free to move.
- But . . . $\Delta E_{\rm dw}^{\rm bt}$ and $\Delta E^{\rm bt}$ measures a barrier against vortex dissipation if and only if the system is ergodic.
- ◆ And . . . Ergodicity cannot be verified by the Domain Wall Energy.

ZERO T: ERGODICITY BREAKING



- ◆ Parables eats up the roughness of the free-energy twist landscape. But . . .
- \bullet . . . neighboring points (in the 2D twist space) might be distant in (the L^2 -dimensional) phase space.
- If the system is ergodic: $\langle \partial^2 F / \partial \Delta^2 |_{\Delta = \Delta_0} \rangle = \Upsilon = 0$
- If ergodicity is broken: $\Upsilon = 1$.

ZERO T: FINDING THE GROUND STATE



- \bullet 'Heat' the system to $T = \infty$. (= randomize the spin and twist degrees of freedom.)
- \bullet 'Cool' fast to T=0. (= decrease the local current until the vortex configuration doesn't change.)
- When the same lowest energy vortex configuration has been re-encountered $n_{\min} = N_{\min}$ times, this is said to be the ground state.

Advantages: Fast for very small systems. Seemingly reliable. Disadvantage: $O(\exp(L))$

For calculating $E_{\min}(\Delta)$ with a fixed Δ (for the Domain Wall Energy), apply the algorithm above to only the spin d.o.f.

FINITE T: THE FOURTH ORDER MODULUS

♦ The current:

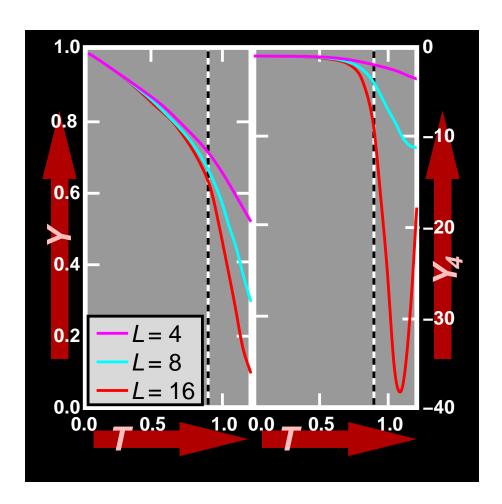
$$\widehat{I} = \frac{\partial F}{\partial \Delta} \Big|_{\Delta = \Delta_0}$$

♦ The helicity modulus

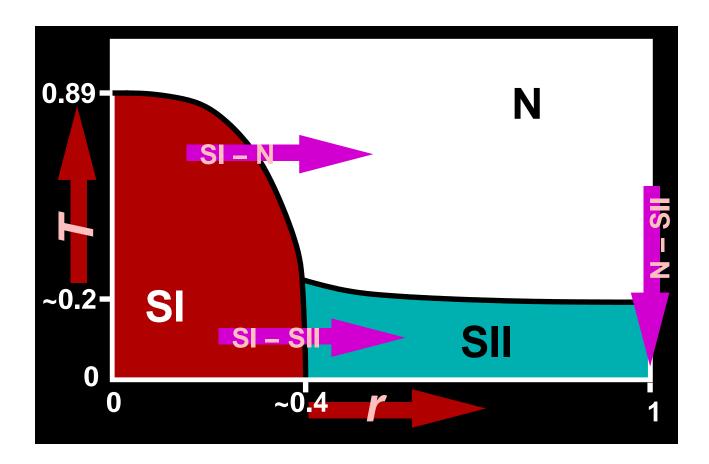
$$\widehat{\Upsilon} = \frac{\partial^2 F}{\partial \Delta^2} \Big|_{\Delta = \Delta_0} = -\widehat{E} - \frac{1}{T} (\widehat{I} - I)^2$$

♦ The fourth order modulus:

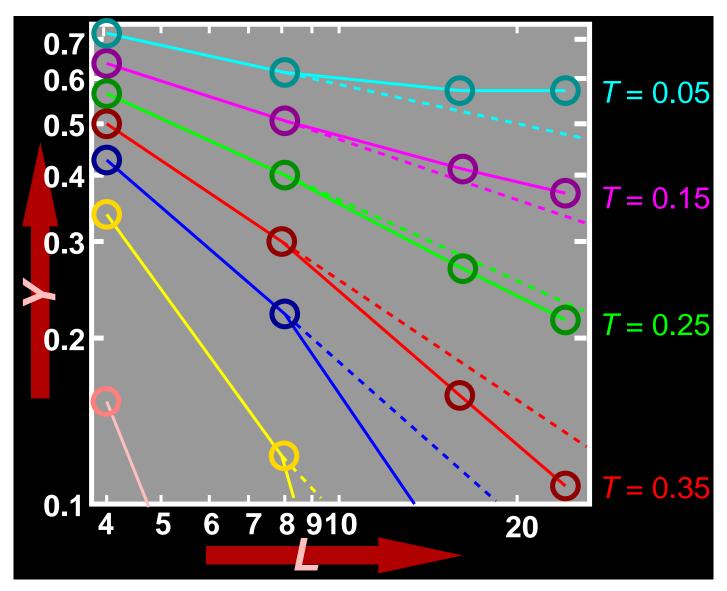
$$\widehat{\Upsilon}_4 = \frac{\partial^4 F}{\partial \Delta^4} \Big|_{\Delta = \Delta_0} = -4\Upsilon - 3\widehat{E} - \frac{3L^2}{T} (\widehat{\Upsilon} - \Upsilon)^2 + \frac{2}{L^2 T^3} (\widehat{I} - I)^4$$



FINITE T: How to SEE THE THREE TRANSITIONS

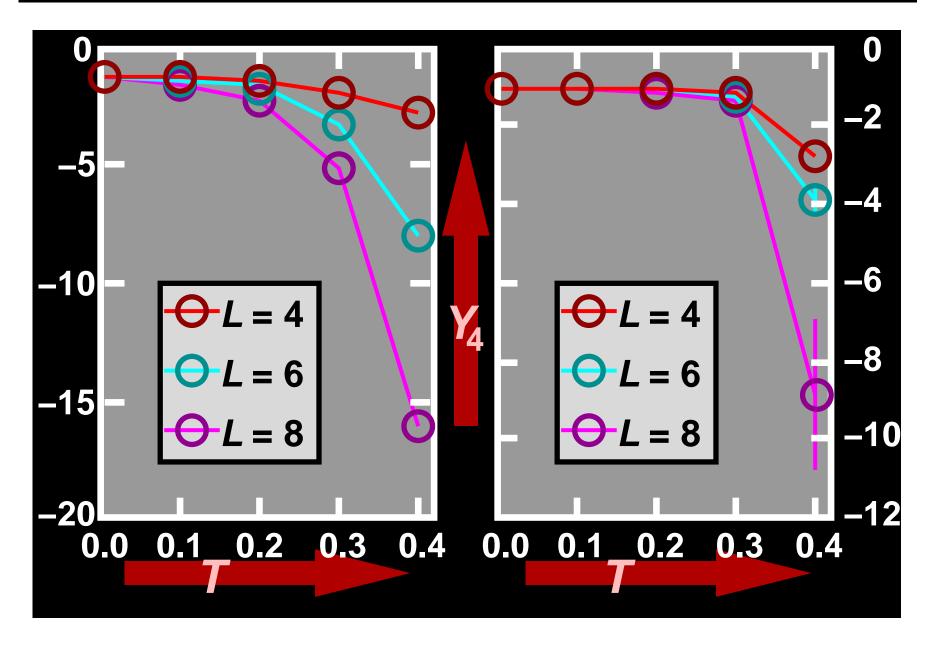


- ♦ The N SII transition is located to the temperature where $\Upsilon(T, L) > 0$ as $L \to \infty$.
- For the SI SII transition, the Υ signal is too weak so we use Υ_4 .
- ♦ The N SI transition has earlier been located by finite T Monte Carlo and Zero T DWE-studies. We use Υ_4 to compare with the SI SII transition.



Gauge Glass (maximally disordered limit of the Random Gauge XY model)

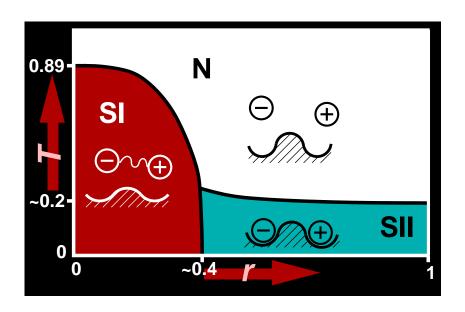
FINITE T: THE N - SI AND SI - SII TRANSITIONS



CONCLUSIONS FROM THE PAPERS

Random Gauge XY Model

- ◆ There exists a low-*T* superconducting phase for all values of *r*.
- ightharpoonup In the large-r phase ergodicity is broken.



The XY Spin Glass Model

- ◆ For almost all *s* there is no low-*T* superconducting phase.
- There is a possibility of a chiral phase at low temperatures.

The Random Pinning Model

◆ There is no low-*T* superconducting phase.