Congestion and centrality in complex networks

Petter Holme, Umea University, Sweden

Motivation

- * Many studies have used graph centrality measures to assess the load on vertices in communication networks
- * Where congestion arises depends both on the network and the dynamical system.
- * If the system is congestion sensitive the centrality measures may fail to capture the load.
- * We test how the betweenness centrality correlates with dynamical centrality measures.

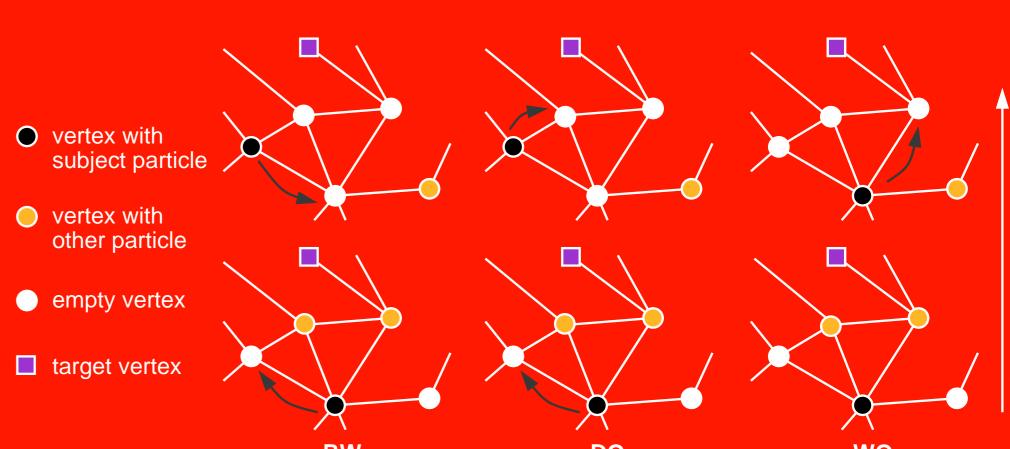
Model

- * To model a congestion sensitive communication system on a graph G = (V, E) we consider fN particles (agents) that each are characterized by a start and a target vertex.
- * Maximum one particle is allowed at each vertex.
- * The particles are updated sequentially. They move to a neighboring vertex according to their strategy:

Strategies

Random Walk (RW): A particle moves to a randomly selected, free, neighbor.

Detour Obstacle (DO): A particle chooses randomly among the vertices that lies closest to the target. If all such are occupied it moves to a vertex equidistant to the target. If no such are free either it moves away from the target.

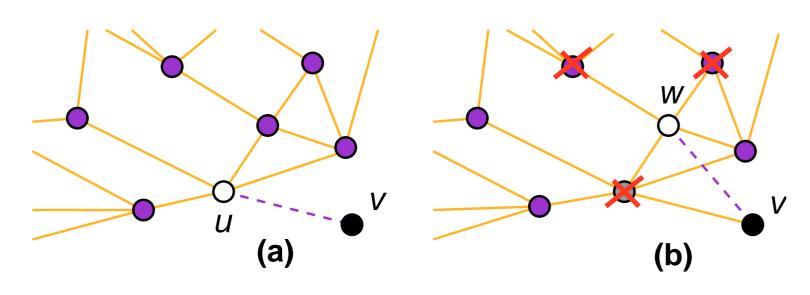


Wait at Obstacle (WO): Like DO but if no vertex closer to the target is free, then the particle waits.

The networks

(a) In the preferential attachment step for the newly added vertex v(denoted as filled black circle), the white vertex u is chosen with the probability proportional to its degree (the dotted line

represents the new edge). **(b)** In the triangle formation step an additional edge (dotted line) is added to a randomly

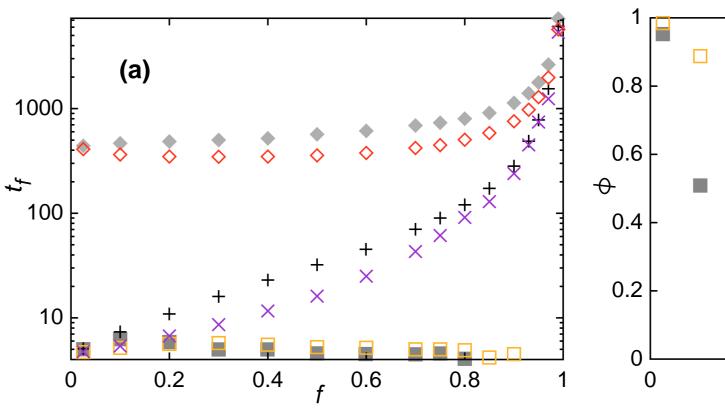


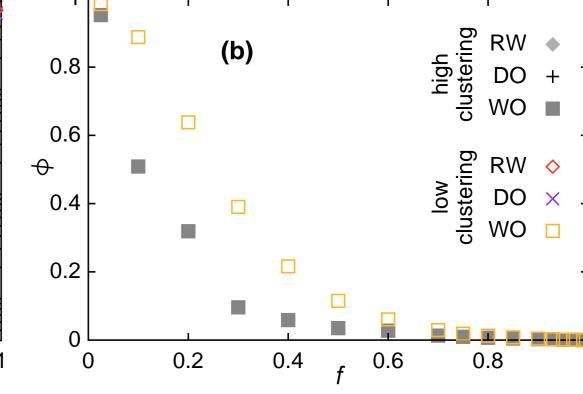
selected vertex w in the neighborhood Γ_u of the vertex u chosen in the previous preferential attachment step in (a). The crossed out vertices are not allowed since they are not in Γ_{μ} . Without the triangle formation step (i.e. if $m_t = 0$), the clustered scale-free model reduces to the original BA model of scale-free networks.

Speed of the dynamics

The traffic-density dependence of speed of the dynamics: Average finding $t_{\scriptscriptstyle f}$ time for pairs at distance four as a function of particle density for the three different types of

dynamics, and both low $(m_t = 0)$ giving C = 0.056for the present values of m, m_0 and N) and high clustering $(m_t =$ 2.8 giving C =0.24). (b) shows the fraction of pairs that reaches their targets ϕ as

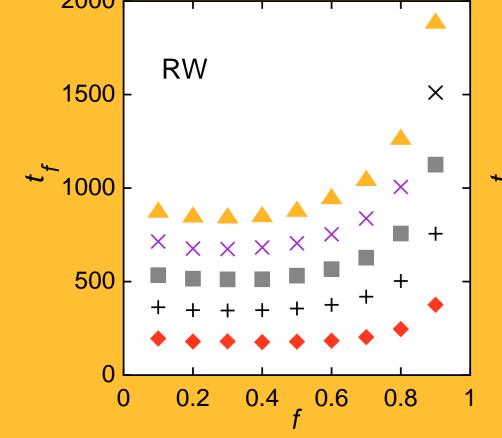


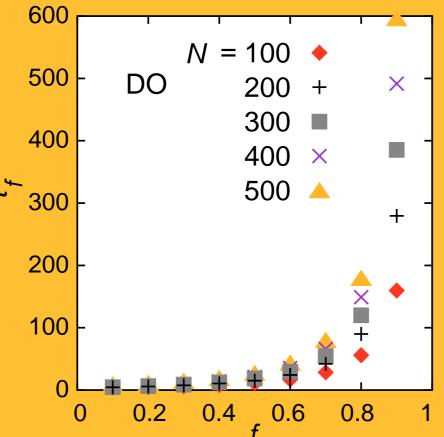


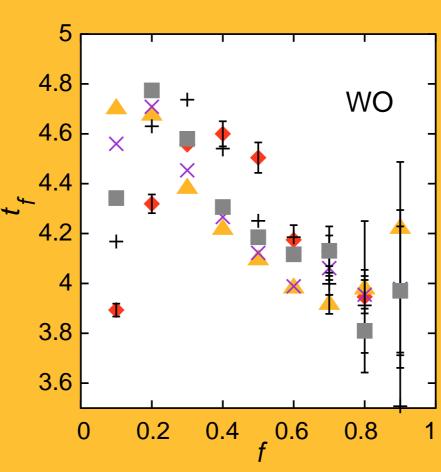
a function of f in the WO dynamics. For the RW and DO updating rules ϕ is strictly unity. The other model parameters are N = 200 and $m = m_0 = 3$.

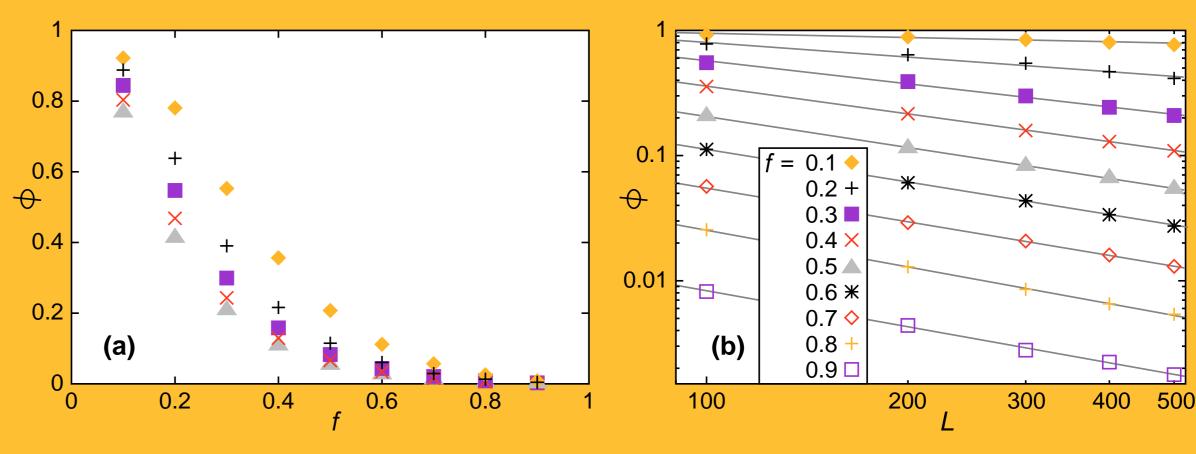
The effect of traffic density

Finding time of vertex-pairs at distance four for different system sizes. The system parameters are $m_t = 0$, $m = m_0 = 3$. The lack of emerging singularities for 0.1 < f < 0.9 implies that qualitative conclusions from moderate system sizes will hold (in this region of *f*) for arbitrary finite system sizes.





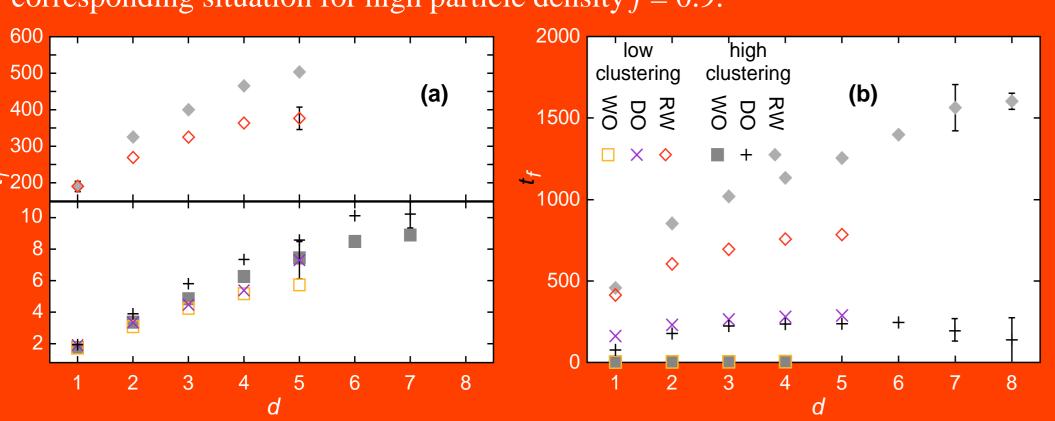




Finite size scaling of the WO dynamic's finding probability ϕ . (a) shows ϕ as a function of f while **(b)** displays ϕ as a function of system size. The lines are curve-fits to a power-law form. Just as the RW and DO dynamics finding times goes to infinity (as seen above), ϕ goes to zero, which shows that all three dynamics are (from a statistical mechanics point of view) in a congested state.

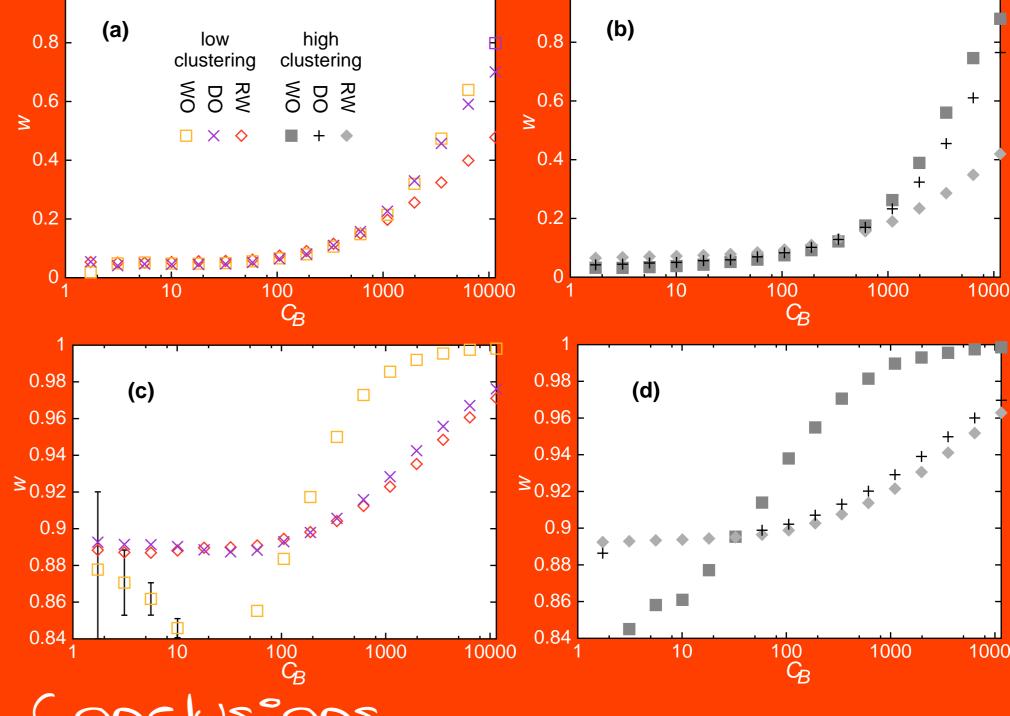
Finding time vs distance to target

Finding time as a function of geodesic distance to the target. (a) shows the situation for low particle density f = 0.1. (b) shows the corresponding situation for high particle density f = 0.9.



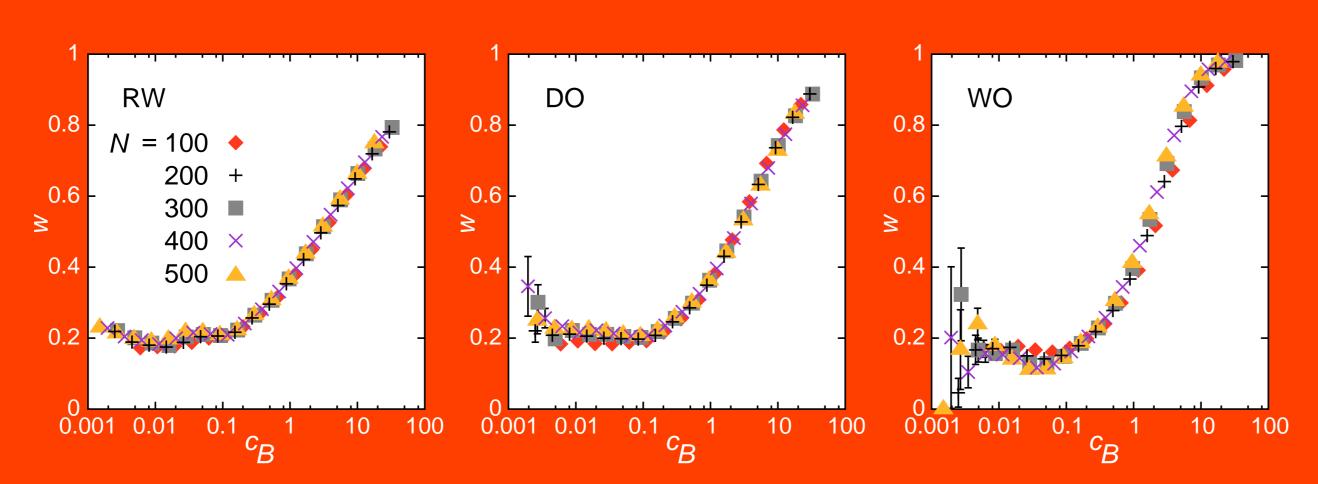
Occupation time as a function of betweenness. (a) and (b) shows the three dynamics at the low particle density f = 0.1; (c) and (d) shows the corresponding situation for a high particle density f = 0.9. (a) and (c) shows networks of low clustering $m_t = 0$ (giving C = 0.056) while (b) and (d) have high clustering m_{t} = 2.8 (giving C = 0.24). The other model parameters are N = 200 and $m = m_0 = 3$.

Occupation ration vs betweenness



Occupation ration vs rescaled betweenness

Occupation ratio as a function of normalized betweenness for different N. The other model parameters are f = 0.3, $m_{t} = 0$, and $m = m_0 = 3$. The curves overlap as N grows indicating that the qualitative picture is the same for arbitrary large sizes.



Conclusions

- * In networks with low traffic density the WO strategy is the fastest, otherwise DO is fastest.
- * Betweenness is not proportional to the occupation ratio (the dynamical congestion measure).
- * The reason betweenness fails as a load measure is that neighbors of central vertices get a heavy load as well.

