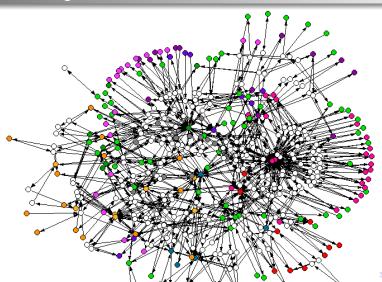
Network modularity, currency metabolites and graph representations of metabolism

Petter Holme

KTH, CSC, Computational Biology

December 17, 2007, Mathematics for biological networks

http://www.csc.kth.se/~pholme/

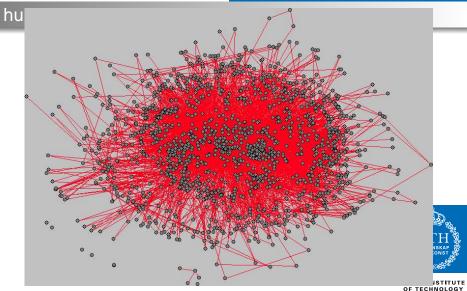


networks (physicist style?) modularity & currency metabolites subnetwork hierarchies

metabolic networks, intro

networks (physicist style?) modularity & currency metabolites subnetwork hierarchies

B. burgdorferi, 2000



OF TECHNOLOG

Petter Holme

Network modularity, currency metabolites and graph representa

networks (physicist style?) modularity & currency metabolites subnetwork hierarchies

. . . of biochemical networks. What questions can we ask?

- how can the large-scale organization be characterized?

- the functions of molecules?

- . . . of biochemical networks. What questions can we ask?
 - how can the large-scale organization be characterized?
 - are there any universal features over different species?
 - do the differences tell us something about evolution?
 - can we identify functional modules?
 - . . the functions of molecules?

- . . . of biochemical networks. What questions can we ask?
 - how can the large-scale organization be characterized?
 - are there any universal features over different species?
 - do the differences tell us something about evolution?
 - can we identify functional modules?
 - . . the functions of molecules?

- . . . of biochemical networks. What questions can we ask?
 - how can the large-scale organization be characterized?
 - are there any universal features over different species?
 - do the differences tell us something about evolution?
 - can we identify functional modules?
 - . . the functions of molecules?

- . . . of biochemical networks. What questions can we ask?
 - how can the large-scale organization be characterized?
 - are there any universal features over different species?
 - do the differences tell us something about evolution?
 - can we identify functional modules?
 - . . the functions of molecules?

- . . . of biochemical networks. What questions can we ask?
 - how can the large-scale organization be characterized?
 - are there any universal features over different species?
 - do the differences tell us something about evolution?
 - can we identify functional modules?
 - . . the functions of molecules?

- items are, naturally, coupled pairwise MAYBE?
- the network is relatively sparse (the average degree is constant) ALMOST TRUE
- there is a dynamic system on the network TRUE
- the time scale of this dynamics is faster than the dynamics of network evolution TRUE!

What systems can be analyzed with complex network methods?

- items are, naturally, coupled pairwise MAYBE?
- the network is relatively sparse (the average degree is constant) ALMOST TRUE
- there is a dynamic system on the network TRUE
- the time scale of this dynamics is faster than the dynamics of network evolution TRUE!

Petter Holme

- items are, naturally, coupled pairwise MAYBE?
- the network is relatively sparse (the average degree is constant) ALMOST TRUE
- there is a dynamic system on the network TRUE
- the time scale of this dynamics is faster than the dynamics of network evolution TRUE!

- items are, naturally, coupled pairwise MAYBE?
- the network is relatively sparse (the average degree is constant) ALMOST TRUE
- there is a dynamic system on the network TRUE!
- the time scale of this dynamics is faster than the dynamics of network evolution TRUE!

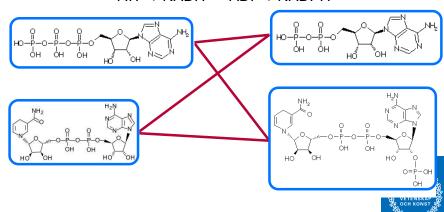
- items are, naturally, coupled pairwise MAYBE?
- the network is relatively sparse (the average degree is constant) ALMOST TRUE
- there is a dynamic system on the network TRUE!
- the time scale of this dynamics is faster than the dynamics of network evolution TRUE!

- items are, naturally, coupled pairwise MAYBE?
- the network is relatively sparse (the average degree is constant) ALMOST TRUE
- there is a dynamic system on the network TRUE!
- the time scale of this dynamics is faster than the dynamics of network evolution TRUE!

- items are, naturally, coupled pairwise MAYBE?
- the network is relatively sparse (the average degree is constant) ALMOST TRUE
- there is a dynamic system on the network TRUE!
- the time scale of this dynamics is faster than the dynamics of network evolution TRUE!

- items are, naturally, coupled pairwise MAYBE?
- the network is relatively sparse (the average degree is constant) ALMOST TRUE
- there is a dynamic system on the network TRUE!
- the time scale of this dynamics is faster than the dynamics of network evolution TRUE!

- items are, naturally, coupled pairwise MAYBE?
- the network is relatively sparse (the average degree is constant) ALMOST TRUE
- there is a dynamic system on the network TRUE!
- the time scale of this dynamics is faster than the dynamics of network evolution TRUE!


representations

ATP + NADH ↔ ADP + NADPH

networks (physicist style?) modularity & currency metabolites subnetwork hierarchies

representations

ATP + NADH ↔ ADP + NADPH

vertices: substrates

edges: between products / substrates

OF TECHNOLOGY

networks (physicist style?) modularity & currency metabolites subnetwork hierarchies

representations

ATP + NADH ↔ ADP + NADPH

vertices: substrates

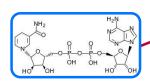
edges: between products / substrates

networks (physicist style?) modularity & currency metabolites subnetwork hierarchies

representations

ATP + NADH ↔ ADP + NADPH

vertices: substrates


edges: between all products / substrates

OF TECHNOLOGY

networks (physicist style?) modularity & currency metabolites subnetwork hierarchies

representations

ATP + NADH ↔ ADP + NADPH

NADH kinase

vertices: substrates + enzymes (reactions)

edges: between substance /- reaction vertices

OF TECHNOLOGY

networks (physicist style?) modularity & currency metabolites subnetwork hierarchies

representations

- different representations, give different information
- most common representation = substance graphs—following atoms, the number of conversions between two molecules are small \iff the graph distance is small

representations

- different representations, give different information

representations

- different representations, give different information
- most common representation = substance graphs—following atoms, the number of conversions between two molecules are small

 the graph distance is small

what is network structure?

- how the network differs a random network
- to be more precise: how the network differs from a null model

what is network structure?

- how the network differs a random network
- to be more precise: how the network differs from a null model

what is network structure?

- how the network differs a random network
- to be more precise: how the network differs from a null model

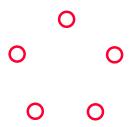
modularity & currency metabolites subnetwork hierarchies

- Network structures are relative . . .
- ... so one has to be clear about what to compare with ... a null model
- Null model 1: random graphs (Poisson random graphs, Erdős-Rényi graphs)
- Null model 2: random graphs constrained to the set of degrees of the original graph

modularity & currency metabolites subnetwork hierarchies

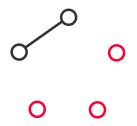
- Network structures are relative . . .
- ... so one has to be clear about what to compare with ... a null model
- Null model 1: random graphs (Poisson random graphs, Erdős-Rényi graphs)
- Null model 2: random graphs constrained to the set of degrees of the original graph

- Network structures are relative . . .
- ... so one has to be clear about what to compare with ... a null model
- Null model 1: random graphs (Poisson random graphs, Erdős-Rényi graphs)
- Null model 2: random graphs constrained to the set of degrees of the original graph

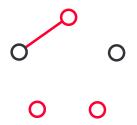


- Network structures are relative . . .
- ... so one has to be clear about what to compare with ... a null model
- Null model 1: random graphs (Poisson random graphs, Erdős-Rényi graphs)
- Null model 2: random graphs constrained to the set of degrees of the original graph

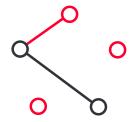
random graphs

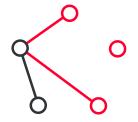


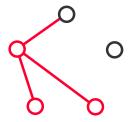
for each pair of vertices, with probability *p*, add an edge

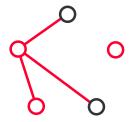

random graphs

for each pair of vertices, with probability *p*, add an edge

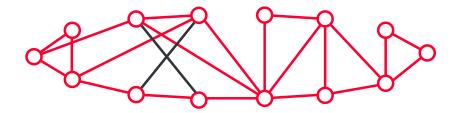




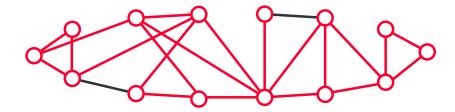




start from the original graph choose edge pairs, and swap them



start from the original graph choose edge pairs, and swap them



start from the original graph choose edge pairs, and swap them

start from the original graph choose edge pairs, and swap them

start from the original graph choose edge pairs, and swap them

the dogmas of network science

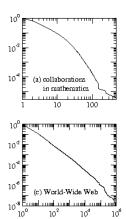
- real networks have both structure and randomness
- the network structure relates to the function of the network

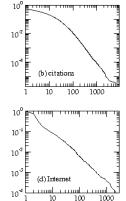
subnetwork hierarchies

the dogmas of network science

- real networks have both structure and randomness
- the network structure relates to the function of the network

the dogmas of network science


- real networks have both structure and randomness
- the network structure relates to the function of the network



modularity & currency metabolites subnetwork hierarchies

degree distribution

100

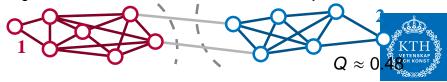
- Power-law degree distributions.
- Increasing average degree.
- Network modularity?

ROYAL INSTITUTE OF TECHNOLOGY

- Power-law degree distributions.
- Increasing average degree.
- Network modularity?

- Power-law degree distributions.
- Increasing average degree.
- Network modularity?

- Power-law degree distributions.
- Increasing average degree.
- Network modularity?



modularity (of a partition)

Definition

$$Q = \sum_{i} \left[e_{ii} - \left(\sum_{j} e_{ij} \right)^{2} \right]$$
 (1)

the sum is over the a partition into clusters and e_{ij} is the fraction of edges that leads between vertices of cluster i and j

ROYAL INSTITUTE
OF TECHNOLOGY

modularity & currency metabolites subnetwork hierarchies

modularity (of a graph)

Definition

$$\hat{Q}(G) = \max_{\text{partitions}} Q \tag{2}$$

(null model: random graphs)

Definition

$$\hat{Q}(G) = \max_{\text{partitions}} Q - \left\langle \max_{\text{partitions}} Q \right\rangle \tag{3}$$

(null model: random graphs with the same degree sequence

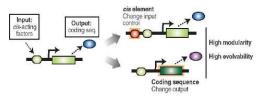
ROYAL INSTITUTE OF TECHNOLOGY

modularity (of a graph)

Definition

$$\hat{Q}(G) = \max_{\text{partitions}} Q \tag{2}$$

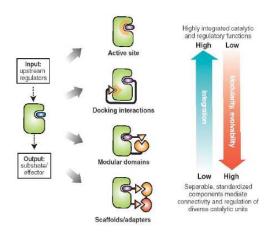
(null model: random graphs)


Definition

$$\hat{Q}(G) = \max_{\text{partitions}} Q - \left\langle \max_{\text{partitions}} Q \right\rangle \tag{3}$$

(null model: random graphs with the same degree sequence)

modularity (the biological idea)



(Bhattacharyya et al., 2006, Annu. Rev. Biochem. 75, pp. 655-80)

ROYAL INSTITUTE OF TECHNOLOGY

modularity (the biological idea)

(Bhattacharyya et al., 2006, Annu. Rev. Biochem. **75**, pp. 655–80)

- robustness—sensitivity of a relevant dynamic system on the network to perturbations
- perturbations = changes in:
 - network topology
 - concentrations
 - delays in periodic input
- in spreading of harmful things (like disease), modularity increases robustness
- in other systems where a flow is needed throughout the networks, modularity might decrease robustness

- robustness—sensitivity of a relevant dynamic system on the network to perturbations
- perturbations = changes in:
 - network topology
 - concentrations
 - delays in periodic input
- in spreading of harmful things (like disease), modularity increases robustness
- in other systems where a flow is needed throughout the networks, modularity might decrease robustness

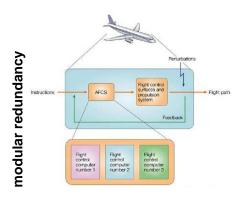
- robustness—sensitivity of a relevant dynamic system on the network to perturbations
- perturbations = changes in:
 - network topology
 - concentrations
 - delays in periodic input
- in spreading of harmful things (like disease), modularity increases robustness
- in other systems where a flow is needed throughout the networks, modularity might decrease robustness

- robustness—sensitivity of a relevant dynamic system on the network to perturbations
- perturbations = changes in:
 - network topology
 - concentrations
 - delays in periodic input
- in spreading of harmful things (like disease), modularity increases robustness
- in other systems where a flow is needed throughout the networks, modularity might decrease robustness

- robustness—sensitivity of a relevant dynamic system on the network to perturbations
- perturbations = changes in:
 - network topology
 - concentrations
 - delays in periodic input
- in spreading of harmful things (like disease), modularity increases robustness
- in other systems where a flow is needed throughout the networks, modularity might decrease robustness

- robustness—sensitivity of a relevant dynamic system on the network to perturbations
- perturbations = changes in:
 - network topology
 - concentrations
 - delays in periodic input
- in spreading of harmful things (like disease), modularity increases robustness
- in other systems where a flow is needed throughout the networks, modularity might decrease robustness

- robustness—sensitivity of a relevant dynamic system on the network to perturbations
- perturbations = changes in:
 - network topology
 - concentrations
 - delays in periodic input
- in spreading of harmful things (like disease), modularity increases robustness
- in other systems where a flow is needed throughout the networks, modularity might decrease robustness

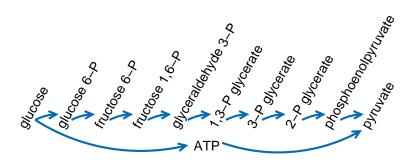


- robustness—sensitivity of a relevant dynamic system on the network to perturbations
- perturbations = changes in:
 - network topology
 - concentrations
 - delays in periodic input
- in spreading of harmful things (like disease), modularity increases robustness
- in other systems where a flow is needed throughout the networks, modularity might decrease robustness

modularity and robustness

(Kitano, 2004, Nat. Rev. Genet. 5, pp. 826-837.)

modularity and robustness


distributed redundancy (A. Wagner):

In distributed robustness, many parts of a system contribute to its function, but all of these parts have different roles. When one part fails or is changed through mutations, other parts can compensate for this failure, but not simply by standing in for the failed part.

currency metabolites

OF TECHNOLOGY

currency metabolites

Wagner & Fell, 2001	gner & Fell, 2001 Schuster et al., 2002		
ATP	ATP	ATP	
ADP	ADP	ADP	
NADP	NADP	NADP	
NADPH	NADPH		
NAD		NAD	
NADH			
	P_i	P_i	
	H_2O	H_2O	
	H^+		
	PP_i		
	CMP	KT VETEN	
		CO ₂	

 NH_3

- currency metabolites have high degree
- they make not meaningful shortcuts
- i.e. tie together distant parts of the network
- (4) i.e. tie different modules together
- . . . let's turn this around to a definition . .

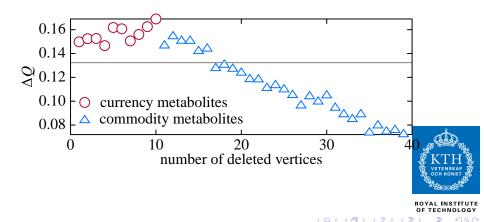
- currency metabolites have high degree
- they make not meaningful shortcuts
- i.e. tie together distant parts of the network
- (4) i.e. tie different modules together
- . . . let's turn this around to a definition . .

- currency metabolites have high degree
- they make not meaningful shortcuts
- i.e. tie together distant parts of the network
- i.e. tie different modules together
- ... let's turn this around to a definition ...

- currency metabolites have high degree
- they make not meaningful shortcuts
- i.e. tie together distant parts of the network
- (4) i.e. tie different modules together
- ... let's turn this around to a definition ...

- currency metabolites have high degree
- they make not meaningful shortcuts
- i.e. tie together distant parts of the network
- i.e. tie different modules together
- . . . let's turn this around to a definition . .

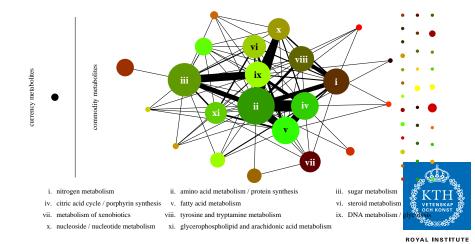
- currency metabolites have high degree
- they make not meaningful shortcuts
- i.e. tie together distant parts of the network
- (1) i.e. tie different modules together
- . . . let's turn this around to a definition . . .


Definition

Remove vertices in order of (currently) highest degree. The set of removed vertices that gives the network the highest modularity is the set of currency metabolites.

ROYAL INSTITUTE OF TECHNOLOGY

human currency metabolites



detected currency metabolites

Wagner & Fell, 2001	Schuster et al., 2002	Ma & Zeng, 2003		
ATP	ATP	ATP		
ADP	ADP	ADP		
NADP	NADP	NADP		
NADPH	NADPH			
NAD		NAD		
NADH				
	P_i	P_i		
	H ₂ O	H ₂ O		
	H^+	4		
	PP_i	**************************************		
	CMP	∦ KT ₹ vetens		
		CO ₂		

4 - > 4 - > NH3

modularity and robustness

different organisms

organism	samples	nodes	edges	c. m.	modularity	
animals		1621	4662	6.2	0.157	
plants	1	1561	4302	1	0.144	
fungi	2	1281	3654	1.5	0.150	
bacteria	99	1050	2739	1.7	0.140	

- proposed graph based definition of currency metabolites
- metabolic networks are modular, but not so much
- the reason they are not more modular might be give robustness

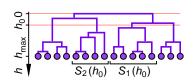
- proposed graph based definition of currency metabolites
- metabolic networks are modular, but not so much
- the reason they are not more modular might be give robustness

(Huss & Holme, 2007, IET Syst. Biol. 1, pp. 280-5.)

Petter Holme

- proposed graph based definition of currency metabolites
- metabolic networks are modular, but not so much
- the reason they are not more modular might be give robustness

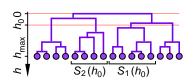
- proposed graph based definition of currency metabolites
- metabolic networks are modular, but not so much
- the reason they are not more modular might be give robustness



- proposed graph based definition of currency metabolites
- metabolic networks are modular, but not so much
- the reason they are not more modular might be give robustness

P. Holme, M. Huss & H. Jeong, 2003, Bioinformatics 19, pp. 532-8.

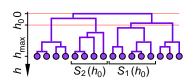
- Start with a directed bipartite networks, with both reaction and substance vertices (keep the currency metabolites).
- Iteratively remove the reaction vertices with the highest betweenness (fraction of shortest paths passing through a vertex).
- Study the dendrogram of this process.



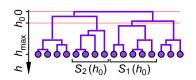
Petter Holme

P. Holme, M. Huss & H. Jeong, 2003, Bioinformatics 19, pp. 532–8.

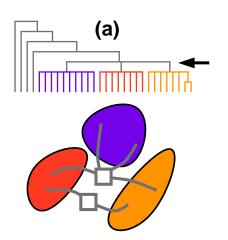
- Start with a directed bipartite networks, with both reaction and substance vertices (keep the currency metabolites).
- Iteratively remove the reaction vertices with the highest betweenness (fraction of shortest paths passing through a vertex).
- Study the dendrogram of this process.

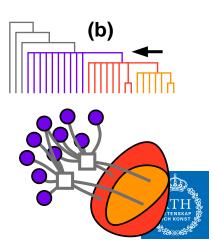


P. Holme, M. Huss & H. Jeong, 2003, Bioinformatics 19, pp. 532–8.

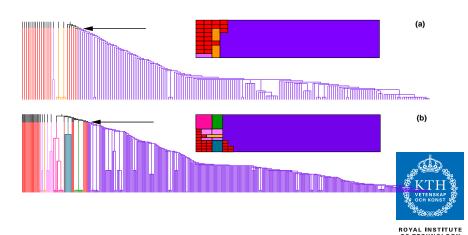

- Start with a directed bipartite networks, with both reaction and substance vertices (keep the currency metabolites).
- Iteratively remove the reaction vertices with the highest betweenness (fraction of shortest paths passing through a vertex).
- Study the dendrogram of this process.

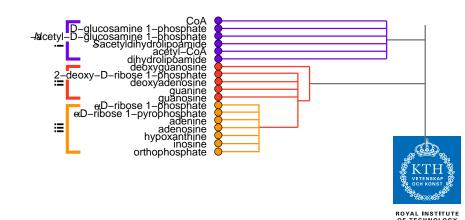
P. Holme, M. Huss & H. Jeong, 2003, Bioinformatics 19, pp. 532–8.

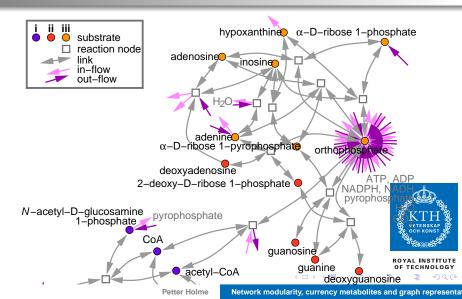

- Start with a directed bipartite networks, with both reaction and substance vertices (keep the currency metabolites).
- Iteratively remove the reaction vertices with the highest betweenness (fraction of shortest paths passing through a vertex).
- Study the dendrogram of this process.

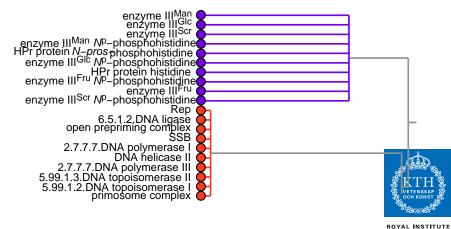


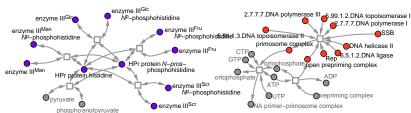
shell- vs community-type ordering

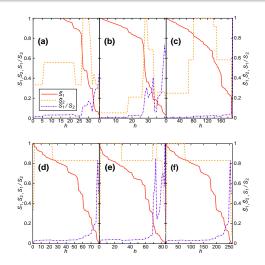





ROYAL INSTITUTE OF TECHNOLOGY




dendrogram



ROYAL INSTITUTE OF TECHNOLOGY

dentrogram statistics

- Shell- rather than community-type ordering
- A few, seemingly clear, modules

ROYAL INSTITUTE OF TECHNOLOGY

- Shell- rather than community-type ordering
- A few, seemingly clear, modules

- Shell- rather than community-type ordering
- A few, seemingly clear, modules

